CSE 333
Section 1

C, Pointers, and Gitlab

W UNIVERSITY of WASHINGTON

Logistics

e Exercise 1:

o DueFriday @ 11:00am (3/31)
e Homework O:

o Due Monday @ 11:59pm (4/03)

o Meant to acquaint you to your repo and project logistics
o Must be done individually (future HW in partners)

TA Intro

Icebreaker!

Please turn to the people next to you and share:

e Name and Year
e What are you excited about in CSE 3337

e Favorite type of peanut butter (Creamy, Chunky, no preference/allergic)

Pointer Review

Pointers

e Data type that stores the address of (the lowest byte of) a datum
o Candraw an arrow in memory diagrams from pointer to pointed to data,
particularly if actual value (stored address) is unknown

e Common uses:
o Reference to data allocated elsewhere (e.g., ma'lloc, literals, files)
o lterators (e.g., data structure traversal)
o Data abstraction (e.g., head of linked list, function pointers)

Pointer Syntax and Semantics

Declared as type* name; or type *name;

o Doesn’t matter, just be consistent

“Address-of” operator & gets a variable’s address
“Dereference” operator * refers to the pointed-to datum

Example code: intx ar = (intx) malloc(3*sizeof(int));

intx p =
*p = 3;

Example diagram:

Stack

ar

&ar[1];

// iterator

Ox1b126b0

// reference

Heap

Ox1bl126b4

Output Parameters

Output Parameters

e Recall: the return statementin a function passes a single value back
through the %rax register

e Anoutput parameteris a C idiom that emulates “returning values”
through parameters:
o Anoutput parameter is a pointer (i.e., the address of a location in

memory)
o The function with this parameter must dereference it to change the value

stored at that location
o The new value is “returned” by persisting after the function returns

e Output parameters are the only way in C to achieve returning multiple
values

Exercise 1

Exercise 1

. void division(int numerator
e Which parameters are output (int denominator
J
parameters? int* quotient,
int*x remainder) {
*quotient = numerator / denominator;
*remainder = numerator % denominator;

quotientand remainder

e Whatshould gointhedivision ¥
blanks? int main(int argc, char*x argv[]) {
" and &rem int quot, rem;
division(22, 5, ,)5
.) printf("%d rem %d\n", ,)
e Whatshouldgointheprintf return ;
blanks? }

quot and rem

Exercise 1

. void division(int numerator
e Which parameters are output (int denominator
J
parameters? int* quotient,
int*x remainder) {
*quotient = numerator / denominator;
*remainder = numerator % denominator;

e Whatshould gointhedivision ¥

blanks? int main(int argc, charx argv[]) {

int quot, rem;

division(22, 5, ,)5
.) printf("%d rem %d\n", ,)5
e Whatshouldgointheprintf return ;

blanks? ¥

Exercise 1

. void division(int numerator,
e Draw outa memory diagram of the int denominator
)

beginning of this callto division. intx quotient,
int*x remainder) {
*quotient = numerator / denominator;

*remainder = numerator % denominator;
quot | ? rem| ? }
int main(int argc, charx argv[]) {
int quot, rem;
. i . division(22, 5, s)3
quotient remainder printf("%d rem %d\n", ,)
return S

numerator | 22 denominator | 5 b

13

Exercise 1

Draw out a memory diagram of the
beginning of this callto division.

void division(int numerator,

*quotient
*remainder

int denominator,

int* quotient,

int*x remainder) {
numerator / denominator;
numerator % denominator;

b

int main(int argc, char*x argv[]) {
int quot, rem;
division(22, 5, ,)5
printf("%d rem %d\n",))

return

)

14

C-Strings

C-Strings

char str_name[13

e Astringin Cisdeclared as an array of characters that is terminated by a null
character '\0'

e When allocating space for a string, remember to add an extra element for the null
character

16

Initialization Examples

o Code: // list initialization
char stri[6] = {'H','e','l','l','0',"\0"};
// string literal initialization
char str2[6] = "Hello";
e Memory: index 0 1 2 3 4 5
Value lHl lel I'LI I'Ll lol I\Ol
e Notes:

o Bothinitialize the array in the declaration scope (e.g., on the stack if a local var), though
the latter can be thought of copying the contents from the string literal into the array

o Thesize 6isoptional, as it can be inferred from the initialization .

High

Address Space:

Stack

Dynamic Data
(Heap)

—_— —

Static Data

Literals

Instructions

Addresses AOXF..F
Common String Literal Error
® COde: . . Memory
// pointer instead of an array addrese
charx str3 = "Hello";
e Memory: str3 | 9x402037 o Loxo.o
index / 0 1 2 3 4 5
Value IHI Iel I'LI I'Ll lol I\Ol
e Notes:

o By default, using a string literal will allocate and initialize the character array in

read-only memory (Literals)

18

Common String Literal Error

High

Addresses 4 0xF..F

Address Space:

Stack

—_— —

Dynamic Data
(Heap)

Static Data

Literals

Instructions

® COde: . . Memory
// pointer instead of an array addrese
charx str3 = "Hello";
e Memory: str3 | 9x402037 o Loxo.o
index / 0 1 2 3 4 5
Value IHI Iel I'LI I'Ll lol I\Ol
e Notes:

o By default, using a string literal will allocate and initialize the character array in

read-only memory (Literals)

o What would happen if we executed str3[0]

— 'J';?

Segfault!

19

Exercise 2

The following code has a bug. What’s the problem, and how would you fix it?

void bar(char ch) {
ch = '3";
+

int main(int argc, charx argv[]) {
char fav_class[] = "CSE331";
bar(fav_class[5]);

printf("%s\n", fav_class); // should print "CSE333"

return 5

The following code has a bug. What’s the problem, and how would you fix it?

void bar(char ch) {
mch = '3"; char[] fav_class

-]} main stack frame ",C, iselier [rsr]z e e

int main(int argc, charx argv[]) {
m char fav_class[] = "CSE331"; char ch |z
= bar (fav_class[5]); bar stack frame
wmpprintf ("%s\n", fav_class); // should print "CSE333"

return 5

}

Modifying the argument ch in bar will not affect fav_class in
main () because argumentsin C are always passed by value.

In order to modify fav_classinmain(), we need to pass a pointer
to a character (charx) into bar and then dereference it:

void bar_fixed(charx ch) {
*ch = '3';

}

The following code has a bug. What’s the problem, and how would you fix it?

void bar_fixed(char*x ch) {
= *xch = '3';
- } main stack frame

int main(int argc, char* argv[]) {
char fav_class[] = "CSE331";

= har (&fav_class[5]);

wp Printf("%s\n", fav_class); // should print "CSE333"
return 5

bar_f1ixed stack frame

}

Modifying the argument ch in bar will not affect fav_class in
main () because argumentsin C are always passed by value.

In order to modify fav_classinmain(), we need to pass a pointer
to a character (charx) into bar and then dereference it:

void bar_fixed(charx ch) {
*ch = '3';

}

char[] fav_class

|||Cl ISI IEI

|3| l3| l3l

l\oll

L

char*x ch

~

J

SettingUp git

gcc 11

e CSE Lab machines and the attu cluster have been updated touse gcc 11.
e Assuchwe’ll beusing gcc 11 this quarter

e To verify that you’re using gcc 11 run:
o gcc -vor
0O gcc --version

e If you use the CSE Linux home VM, you need to use the newer version even if
you have an older one installed (i.e., use 22au or later).

25

Git Repo Usage

e Trytousethe command line interface (not Gitlab’s web interface)

e Only push files used to build your code to the repo
O No executables, object files, etc.
O Don’talwaysusegit add . toaddallyourlocalfiles

e Commit and push when an individual chunk of work is tested and done
O Don’t push after every edit
O Don’t only push once when everything is done

26

git/Gitlab Reference

We have a page that details how to (1) set up Gitlab and (2) use git to manage

your repo (solo or with a partner):
® https://courses.cs.washington.edu/courses/cse333/23sp/gitlab/

We asked you to attempt your Gitlab setup ahead of time:
e Ifyoudidn’t, please do so now on your CSE Linux environment setup
e Ifyoudid andranintoissues, we’ll walk around to help you now

27

https://courses.cs.washington.edu/courses/cse333/23sp/gitlab/

Accessing Gitlab

e Sign-in using your CSE NetIiD @
https://gitlab.cs.washington.edu/

e There should be arepo created for
you titled: cse333-23sp—-<netid>

e Please let us know if you don’t have
one!

CSE 333: Systems Programming Home Calendar Assignments

Resources

Suggestion: bookmark this page in your web browser for quick access.

CSE 333 Administrative Info

Syllabus

Academic Integrity

Course Calendar

Lectures

Sections

Assignments

Gradescope (exercise submission and all grading)

Course Canvas page (Office hour zoom links and gradebook primarily)
Exams

Remote office hours & computing logistics
Using VS Code to do remote editing on the attu machines
Using SCP to transfer files from the attu machines

vim cheat sheet (vimrc.txt configuration file)

Resources
Linux man pages
gdb manual
gdb card
cs:app (351 textbook)
Google C++ style guide
cplusplus.com: C/C++ reference
cplusplus.com: C++ language tutorial
cppreference.com: another good C/C++ reference site
C++ FAQ
O'Reilly books online (use UW login to access books)
CSE 333 git/gitlab guide
CSE GitLab +——
“GIT website, GIT book
CSE Home VM

Resources

28

https://gitlab.cs.washington.edu/

SSH Key Generation

Step 1a) See if you have an existing SSH key
e Runcat ~/.ssh/id_rsa.pub
e Ifyou see along string starting with ssh-rsa or ssh-dsa go to Step 2

Step 1b) Generate a new SSH key
e Ifyoudon’t have an existing SSH key, you’ll need to create one
e Runssh-keygen -t rsa -C "<netid>@cs.washington.edu" to generate a
new key

e Hit enterto skip creating a password
o gitdocs suggest creating a password, but it’s overkill for CSE333

29

Adding your SSH key to Gitlab

Step 2) Copy your SSH key
e Runcat ~/.ssh/id_rsa.pub

e Copy the complete key starting with ssh- and ending with your username and host
(i.e. <netid>@cs.washington.edu)

Step 3) Add your SSH key to Gitlab

30

Adding your SSH key to Gitlab

Step 3) Add your SSH key to Gitlab e .
Add an SSH key for secure access to GitLab. Learn more.
e Navigate to your ssh-keys page

Key

(click on your avatarin the
upper-right, then “Preferences,”
then “SSH Keys” in the left-side
menu)

o Paste into the « Key” teXt bOX and Begins with 'ssh-rsa’, 'ecdsa-sha2-nistp256', ‘ecdsa-sha2-nistp384', 'ecdsa-sha2-nistp521', 'ssh-

ed25519', 'sk-ecdsa-sha2-nistp256@openssh.com’, or 'sk-ssh-ed25519@openssh.com’.

give a “Title” to identify what

Title Expiration date

machine the key is for ———— s
o C“Ck the green “Add key” button Key titles are publicly visible. -(é;x becomes invalid on this date.
below “Title”

Setting up git

The g1t command looks for a file named . gitconfiginyour home directory.
Some commands like commi t and push expect certain options to be set and will
produce verbose messages if not.

If you have not already configured g t, enter the following commands (once) in a
terminal window to set these values:

git config --global user.name “<your name>”
git config --global user.email <your netid>@cs.washington.edu

git config --global push.default simple

32

First Commit

1.

git clone <repo url from project page>
a. Clones your repo
touch README.md
a. Creates an empty file called README . md
git status
a. Prints out the status of the repo: you should see 1 new file README . md
git add README.md (or:git stage README.md)
a. Stages a new file/updated file for commit.
git status: README.md staged for commit
git commit -m "First Commit"
a. Commits all staged files with the provided comment/message.
git status: Your branch 1is ahead by 1 commit.
git push
a. Publishes the changes to the central repo.
You should now see these changes in the web interface (may need to refresh).
Might need git push -u origin master on first commit (only), but would be unusual for this to happen

33

Function Pointers

Function Pointers

e Pointers can store addresses of int one() { return 1; }
. int two() { return 2; }
functions int three() { return 3; }
o Functions are just instructions in , ,
. int get(int (xfunc_name)()) {
are pointers to this memory. }
e Used when performingoperations .t j.in(int arge, chars argvi]) {
for a function to use int resl = get(one);
. int res2 = get(two);
o Like a comparator for a sorter to int res3 = get(three);
usein Java printf("%d, %d, %d\n", resl, res2, res3);
return 5

o Reduces redundancy 3

